Nonlinear system identification of receptive fields from spiking neuron data
نویسندگان
چکیده
منابع مشابه
Estimating nonlinear receptive fields from natural images.
The response of visual cells is a nonlinear function of their stimuli. In addition, an increasing amount of evidence shows that visual cells are optimized to process natural images. Hence, finding good nonlinear models to characterize visual cells using natural stimuli is important. The Volterra model is an appealing nonlinear model for visual cells. However, their large number of parameters an...
متن کاملComputational identification of receptive fields.
Natural stimuli elicit robust responses of neurons throughout sensory pathways, and therefore their use provides unique opportunities for understanding sensory coding. This review describes statistical methods that can be used to characterize neural feature selectivity, focusing on the case of natural stimuli. First, we discuss how such classic methods as reverse correlation/spike-triggered ave...
متن کاملFrom Spiking Neuron Models to Linear-Nonlinear Models
Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-line...
متن کاملChannel identification machines for multidimensional receptive fields
We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural ...
متن کاملOn the Simulation of Nonlinear Bidimensional Spiking Neuron Models
Bidimensional spiking models are garnering a lot of attention for their simplicity and their ability to reproduce various spiking patterns of cortical neurons and are used particularly for large network simulations. These models describe the dynamics of the membrane potential by a nonlinear differential equation that blows up in finite time, coupled to a second equation for adaptation. Spikes a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Neuroscience
سال: 2015
ISSN: 1471-2202
DOI: 10.1186/1471-2202-16-s1-p46